INFSCI 2595 - MACHINE LEARNING Minimum Credits: 3 Maximum Credits: 3 Introduction to machine learning, includes algorithms of supervised and unsupervised machine learning techniques, designing a machine learning system, bias-variance tradeoffs, evaluation metrics; Parametric and non-parametric algorithms for regression and classification, k-nearest-neighbor estimation, decision trees, discriminant analysis, neural networks, deep learning, kernels, support vector machines, ensemble methods, regularization techniques; Dimensionality reduction, principle component analysis, LDA, t-SNE; Clustering methods such as k-means, hierarchical clustering, spectral clustering, DBSCAN; Mathematical foundations including linear algebra, probability theory, statistical tests, statistical learning theory; Best practices and application to real-world problems. Academic Career: Graduate Course Component: Lecture Grade Component: Grad LG/SNC Basis Click here for class schedule information.
Add to Portfolio(opens a new window)
|