Javascript is currently not supported, or is disabled by this browser. Please enable Javascript for full functionality.

Skip to Main Content
University of Pittsburgh    
2017-2018 Graduate & Professional Studies Catalog 
    
 
  Dec 09, 2024
 
2017-2018 Graduate & Professional Studies Catalog [Archived Catalog]

Add to Portfolio(opens a new window)

CS 2750 - MACHINE LEARNING


Minimum Credits: 3
Maximum Credits: 3
This course will give an overview of many techniques and algorithms in machine learning, beginning with topics such as linear and logistic regression, multi-layer neural networks and ending up with more recent topics such as boosting and support vector machines. The basic ideas and intuition behind modern machine learning methods, as well as, a more formal understanding of how and why they work will be covered. Students will have an opportunity to experiment with various machine learning techniques or apply them to a selected problem or domain in the context of a term project.
Academic Career: Graduate
Course Component: Lecture
Grade Component: Grad LG/SNC Basis
Course Requirements: PLAN: Computer Science (CS-PHD; CS-MS; CSMSBS-MS) or Computer Engineering (COEAS-PHD; COEAS-MS; COEENG-PHD; COEENG-MCO)


Click here for class schedule information.



Add to Portfolio(opens a new window)
Catalog Navigation